热线电话:4000-51-9191

就学培训网

登录
首页系统课CDA数据挖掘工程师实操班
CDA数据挖掘工程师实操班
CDA数据挖掘工程师实操班
  • 远程班 2024.06.29

课程简介

CDA数据挖掘工程师实操班:CDA数据挖掘工程师实操班专门为希望转岗到数据挖掘相关岗位学员开设,相关岗位包括数据挖掘工程师、机器学习工程师、算法工程师、商业策略数据分析师等。
课程设计循序渐进,从基础工具与理论知识入门,进阶到统计分析方法和机器学习模型、文本挖掘模型,以实战项目案例贯穿课程讲解。
其中包括:Python编程基础、数据清洗、统计分析、数据处理与特征工程、Python机器学习、自然语言处理等课模块。
课程理论知识涵盖CDA LEVEL II和CDA LEVEL III等级考试的所有考点,有利于对应等级考试的学员备考。

学习目标

熟练掌握数据挖掘全流程的Python实操,包括数据清洗算法、特征工程、数据建模、数据可视化等
熟练掌握Python数据挖掘算法与实践,包括统计分析、统计模型、机器学习算法、深度学习算法、文本挖掘算法
灵活使用数据挖掘算法解决各行业的业务问题,通过策略优化和精准预测来解决运营、产品、营销方面的问题

学习对象和基础

有一定数学或统计、计算机基础与数据分析业务经验,希望脱产学习后转岗到数据挖掘岗者
希望提升数据挖掘技术的在职提升者
从事算法科学、深度学习等工作的科研人员、分析师与工程师等
产品、运营、营销、管理、咨询相关岗位从业者,希望增加数据分析技能与思维
参加CDA等级认证考试 LEVELII和 LEVEL Ⅲ 考生


1工具先导课

1-1Python基础和数据清洗

2数字化工作保障机制-数据治理

2-1数据治理驱动因素
2-2数据治理域
2-3数据管理域
2-4数据应用域
2-5如何开展数据治理

3数字化工作方法

3-1EDIT数字化模型简介
3-2业务探查(E)
3-3问题诊断(D)
3-4业务策略优化和指导(I)
3-5算法工具介绍(T)

4数据采集方法

4-1数据采集方法
4-2数据模型管理

5Python编程基础

5-1Python标准数据类型
5-2控制流语句
5-3自定义函数
5-4异常和错误
5-5类与面向对象编程
5-6Python连接数据库操作
5-7Python编程基础习题串讲与直播答疑

6Python数据探索、数据处理与可视化

6-1Numpy数组基础操作
6-2Pandas数据表的基本操作
6-3Pandas数据探索
6-4Pandas数据可视化
6-5Python数据可视化包-Matplotlib介绍
6-6Python数据可视化包-Seaborn介绍与图形绘制

7Python探索分析综合案例

7-1实战项目1:斯德哥尔摩气候可视化分析
7-2实战项目2:餐饮订单数据清洗与分析
7-3实战项目3:文本数据分析之QQ聊天记录可视化分析

8Pythont统计分析与运筹学基础

8-1先导课:微积分与线性代数
8-2抽样方法
8-3统计量及抽样分布
8-4参数估计与假设检验
8-5统计分析与Python实战
8-6线性规划与二次优化
8-7实战项目1:关于饮料消费的统计分析
8-8实战项目2:快递公司的路线策略优化

9数据分析模型、算法与商业应用

9-1数据分析方法论介绍
9-2方差分析
9-3回归分析
9-4分类数据分析
9-5逻辑回归
9-6实战项目1:金融客户行为特征分解与营销策略优化
9-7实战项目2:汽车行业销售预测与经营战略优化
9-8实战项目3:基于广义线性模型的汽车保险分类定价策略的优化
9-9数据降维
9-10时间序列分析
9-11实战项目1:收益率的系列预测
9-12实战项目2:基于时间序列的机场客流预测与运营策略优化

10标签体系与应用

10-1用户标签体系设计原理
10-2用户标签的制作方法
10-3标签体系的用户画像应用
10-4实战项目1:用户行为在营销活动的价值分析
10-5实战项目2:自动预警指标推送功能框架的搭建
10-6实战项目3:app静默用户触动分析

11数据挖掘概论

11-1数据挖掘概要
11-2数据挖掘方法论
11-3基础数据挖掘技术
11-4进阶数据挖掘技术

12高级数据处理与特征工程

12-1高级数据预处理
12-2特征工程概要
12-3特征建构
12-4特征选择
12-5特征转换
12-6特征学习

13机器学习算法与应用(一)

13-1KNN-最近邻分类算法:原理、实现
13-2决策树(分类树及回归树)
13-3聚类分析
13-4实战项目1:基于决策树的保险精准营销行业案例

14机器学习算法与应用(二)

14-1朴素贝叶斯
14-2神经网络与深度学习
14-3支持向量机
14-4集成方法
14-5实战项目1:航空客户价值分析综合案例
14-6实战项目2:基于集成算法的乳腺癌疾病预测
14-7实战项目3:基于神经网络的汽车燃油滤预测

15机器学习算法与应用(三)

15-1关联规则
15-2序列模式
15-3模型评估
15-4实战项目:推荐系统实战

16机器学习实战

16-1自动机器学习
16-2类别不平衡问题
16-3半监督学习
16-4模型优化
16-5实战项目1:以自动机器学习技术开发银行业信用风险评分模型并进行最佳模型调参
16-6实战项目2:以类别不平衡处理技术开发银行业中小企业信贷营销模型并进行最佳模型调参
16-7实战项目3:以半监督式学习技术开发电信业客户流失模型并进行最佳模型调参

17自然语言处理与文本分析理论与项目实操

17-1自然语言处理概要
17-2分词与词性标注
17-3文本挖掘概要
17-4关键词提取
17-5实战项目1:文本挖掘实战—电商标题关键词分析
17-6实战项目2:在线中文命名实体识别实战
17-7实战项目3:在线中文关系抽取实战

18行业综合项目实战

18-1实战项目1:金融信用评分卡风控建模综合项目实战
18-2实战项目2:以特征工程技术开发文本情感分析模型
18-3实战项目3:以深度学习技术开发银行业信用卡盗刷侦测模型
18-4实战项目4:以图像处理技术、深度学习及迁移学习技术,开发人脸口罩侦测模型